网上科普有关“数据分析的步骤”话题很是火热,小编也是针对数据分析的步骤寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
数据化运营(数据分析)具体落地到企业有这么五步:自上而下、数据闭环、搭建模型、数据分析、权限分配。我们具体看一下每一步应该怎么做。
一、自上而下|定义指标库,确定项目范围
我举一个O2O的例子,首先我们做自上而下的时候要知道公司内部到底有哪些决策,老板、产品、运营、培训、市场、招商、客户,每一个部门岗位关心什么指标呢~
我们做指标之前要有一个目标:提升运营效率,降低运营成本,简单说四个字降本增效。老板关注的是利润率问题,产品关注产品使用率、留存率等,运营关注成本控制等等,将不同岗位人员所关注的指标,都给梳理出来。
刚刚说的这块的运营概念是一个公司内的大运营概念,精细到运营部门又会关注到什么指标呢?比如说用户的性别、年龄段、网站的访问情况,订单的变化情况、日留存、双周留存,客户为什么取消订单、每次发放优惠券所带来的效果是怎么样的等等可能在座的运营人士关注这些运营指标。
二、数据闭环|接入分析数据,整理数据
确定好指标之后,要形成数据闭环,把我们横向的业务系统全部打通。比如说以某个知名互联网公司为例,将交易系统、商家系统、客户系统、会员系统、财务系统全部打通,有时候把HR系统也打通了。很多时候销售部门的数据和财务部门的数据总是有差异,很多公司都存在这种情况。数据闭环打通的其实不是一个系统,而是业务之间的壁垒,让每一个部门之间沟通得更好。
除了内部数据之外还有一些外部数据。如果大家做互联网相关的工作,很多会在百度上投广告、关注排名情况,我们应该把这些数据全部都接入进来,包括行业数据都囊括进行做一些综合性分析,做到数据闭环。
三、数据模型|打通数据关系,搭建数据模型
模型搭建是准备面粉的过程,我们把小麦给磨成面粉,最后用面粉做出蛋糕,蛋糕才是我们真正要吃的东西。搭建数据模型,从数据分析的视角,搭建很多数据模型,就是打通数据链条、打通数据之间的关系。
四、数据分析|围绕项目范围,制作分析结果
数据分析我们怎么来做呢?比如说你想要看到不同地域下订单的变化情况,只要把这个数据拖上来,就能够很直观就能看到全国各个不同区域的订单的变化情况;做一个筛选,比如说全部各个区域订单变化情况,其中有一个是川菜,就是这个菜系变化的情况。
五、权限分配|根据用户权限,分配数据资产
数据分析完成后,根据用户权限分配数据资产,手机或者电脑都可以接收,并且自动更新。
另外,业务人员和运营人员才是数据精细运营的核心,因为技术人员是很难了解得到具体业务的定义,我们常说要玩死一个IT很简单,只需要不断地给他提需求就行了。所以说只有业务人员才更能挖掘数据背后的隐藏价值。这个数据做出来之后,下一次还需要分析吗?不需要了。因为你把所有的数据已经关联好了,数据会自动的更新,这就是围绕我们项目范围,制作分析结果。
我们强调业务人员和运营人员才是数据精细运营的核心,因为技术人员是很难了解得到具体业务的定义,我们常说要玩死一个IT很简单,只需要不断地给他提需求就行了。所以说只有业务人员才更能挖掘数据背后的隐藏价值。拆分对比效果如下:
多组数据图的纵横交错不利于数据分析,通过拆分对比,各组数据形式一目了然,并且高度交互,实现针对某个点显示所有品类或时间的具体数据,高效获取数据分析结果。桑基图+钻取可视化效果如下:
不仅可以看到数据流转趋势,还可以深入查看具体的流转的数据是哪些,精准到每个点,以便业务人员对症下药,GIS地图效果如下:
以上数据分析步骤、数据分析图表都来自bdp商业数据平台哦~
关于“数据分析的步骤”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[沛岚]投稿,不代表共度号立场,如若转载,请注明出处:https://goduck.cc/cshi/202503-13677.html
评论列表(4条)
我是共度号的签约作者“沛岚”!
希望本篇文章《数据分析的步骤》能对你有所帮助!
本站[共度号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:网上科普有关“数据分析的步骤”话题很是火热,小编也是针对数据分析的步骤寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。数据化运营(数据分...